Millions of books in English, Spanish and other languages. Free UK delivery 

menu

0
  • argentina
  • chile
  • colombia
  • españa
  • méxico
  • perú
  • estados unidos
  • internacional
portada AlN base layers for UV LEDs
Type
Physical Book
Publisher
Language
Inglés
Pages
156
Format
Paperback
Dimensions
21.0 x 14.8 x 0.8 cm
Weight
0.20 kg.
ISBN13
9783736974517

AlN base layers for UV LEDs

Sebastian Walde (Author) · Cuvillier · Paperback

AlN base layers for UV LEDs - Walde, Sebastian

New Book

£ 51.96

  • Condition: New
Origin: U.S.A. (Import costs included in the price)
It will be shipped from our warehouse between Friday, July 19 and Friday, July 26.
You will receive it anywhere in United Kingdom between 1 and 3 business days after shipment.

Synopsis "AlN base layers for UV LEDs"

To enable the fabrication of high performance ultraviolet (UV) light-emitting diodes (LEDs) this work aims at improving the quality of AlN base layers on sapphire substrates. The main issues for UV LEDs are still a limited internal quantum efficiency due to a high amount of threading dislocations along with a limited light extraction efficiency due to total internal reflection at the AlN/sapphire interface. Therefore, high-temperature annealing of AlN/sapphire layers and growth on nanopatterned sapphire substrates were comprehensively investigated. High-temperature annealing was applied to AlN layers of different strain and thickness grown by metalorganic vapour phase epitaxy (MOVPE). The threading dislocation density could be successfully reduced by more than one order of magnitude down to 6 × 108 cm-2. Wave optical simulations of UV LEDs on nanopatterned sapphire substrates (NPSS) were conducted and showed a potential increase in light extraction efficiency compared to a planar substrate. The optimized MOVPE growth process on sapphire nanopillars and sapphire nanoholes resulted in a fully coalesced and atomically smooth AlN surface. The threading dislocation density was reduced to 1 ×109 cm-2 for AlN on both nanopillars and nanoholes. UVC LEDs emitting at 265 nm wavelength were grown on top of the developed templates. Increased internal efficiency was obtained by reduced dislocation density and more efficient light extraction was achieved on NPSS in case of a transparent heterostructure and reflective contacts. Thus, the developed templates yield considerable improvement in light output compared to conventional templates.

Customers reviews

More customer reviews
  • 0% (0)
  • 0% (0)
  • 0% (0)
  • 0% (0)
  • 0% (0)

Frequently Asked Questions about the Book

All books in our catalog are Original.
The book is written in English.
The binding of this edition is Paperback.

Questions and Answers about the Book

Do you have a question about the book? Login to be able to add your own question.

Opinions about Bookdelivery

More customer reviews